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Abstract. We describe a graphical approach to formally specifying tem-
porally ordered activity routines designed for calendar scheduling. We
introduce a workflow model OWorkflow, for constructing specifications
of long running empirical studies such as clinical trials in which obser-
vations for gathering data are performed at strict specific times. These
observations, either manually performed or automated, are often inter-
leaved with scientific procedures, and their descriptions are recorded in
a calendar for scheduling and monitoring to ensure each observation is
carried out correctly at a specific time. We also describe a bidirectional
transformation between OWorkflow and a subset of Business Process
Modelling Notation (BPMN), by which graphical specification, simula-
tion, automation and formalisation are made possible.

1 Introduction

A typical long-running empirical study consists of a series of scientific proce-
dures interleaved with a set of observations performed over a period of time;
these observations may be manually performed or automated, and are usually
recorded in a calendar schedule. An example of a long-running empirical study
is a clinical trial, where observations, specifically case report form submissions,
are performed at specific points in the trial. In such examples, observations are
interleaved with clinical interventions on patients; precise descriptions of these
observations are then recorded in a patient study calendar similar to the one
shown in Figure 1(a). Currently study planners such as trial designers supply
information about observations either textually or by inputting textual infor-
mation and selecting options on XML-based data entry forms [2], similar to the
one shown in Figure 1(b). However, the ordering constraints on observations and
scientific procedures are complex, and a precise specification of this information
is time consuming and prone to error. We believe the method of specification
may be simplified and improved by allowing specifications to be built formally
and graphically, and visualised as workflow instances.

Workflow instances are descriptions of a composition of activities, each of
which describes either a manual task or an application of a program. One of the
prominent applications of workflow technology is business processes modelling,
for which the Business Process Modelling Notation (BPMN) [8] has been used
as a modelling language. Recent research [9] has also allowed business processes
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Fig. 1. (a) A screen shot of the patient study calendar [3], (b) XML-based data entry
forms [2]

modelled as BPMN diagrams to be translated into executable processes in the
Business Process Execution Language (WS-BPEL) [1], the “de facto” standard
for web service compositions. Furthermore, BPMN has been given formal relative
timed semantics [10]; these allow BPMN diagrams to be interpreted without
ambiguity. BPMN, being a graphical language, lends itself to being used by
domain specialists without computing expertise.

For example, we consider part of a cancer clinical trial, where there is a choice
over two case report form submissions. The two reports are on tumour measure-
ment or toxicity level. Both which to choice and when to report depend on the
blood pressure of the patient concerned. Trial descriptions such as this could
be specified as BPMN process and simulated as BPEL process for validation;
in this paper, we present a customised workflow model OWorkflow, which is an
extension to the CancerGrid trial model. Our notation allows empirical studies
to be easily viewed and monitored through study calendars, while it is not intu-
itive to translate BPMN diagrams for calendar scheduling. We will revisit this
example in Section 5.

This paper has two main contributions. Firstly, we introduce a generic obser-
vation workflow model OWorkflow, an extension of the workflow model imple-
mented in the CancerGrid trial model [4], customised for modelling empirical
studies declaratively. Secondly, we describe bidirectional transformation func-
tions between OWorkflow and a subset of BPMN. While the transformation
from BPMN to OWorkflow provides a medium for empirical studies to be speci-
fied graphically as workflows, transforming OWorkflow to BPMN allows graphi-
cal visualisation. Moreover, the BPMN descriptions of empirical studies may be
translated into BPEL processes, whereby manual and automated observations
may be simulated and executed respectively, and both of which can be monitored
during the enactment of studies. Furthermore, BPMN has a formal semantics
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and the transformation induces such behavioural semantics to OWorkflow. This
means empirical study plans can now be formally specified, and interpreted with-
out ambiguity.

The rest of this paper is structured as follows. We begin by giving a brief
overview of BPMN in Section 2; a more detailed description of its abstract
syntax may be found in our longer paper [11], and the complete definition of
its relative timed semantics may be found in our other paper [10]. Section 3 de-
scribes the abstract syntax and the semantics of our workflow model OWorkflow.
Here we only describe the semantics informally, even though a formal semantics
has been defined via transformation to BPMN. Section 4 details the bidirec-
tional transformation function between OWorkflow and the subset of BPMN
by introducing BPMN constructs that are used as building blocks for modelling
OWorkflow. We have implemented both the syntax of our observational workflow
model and BPMN and the transformation functions in the functional program-
ming language Haskell (see: http://www.haskell.org). Section 5 discusses how
this transformation allows simulation and automation of empirical studies, and
how formalisation has assisted the transformation process. Section 6 discusses
related work and concludes this paper.

2 BPMN

In this section we give an overview of BPMN. For the purpose of specifying and
simulating observational workflow OWorkflow, our implementation of BPMN
states captures only a subset of BPMN, shown in Figure 2. This is a strict subset
of the subset of BPMN formalised in our other paper [10]. We have implemented
the corresponding syntax in Haskell. A fuller description of the syntax of this
subset can be found in our longer paper [11].

Fig. 2. States of BPMN diagram

http://www.haskell.org
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Fig. 3. Abstract syntax of (a) BPMN state and (b) BPMN diagram

States in our subset of BPMN [8] can either be events, tasks, subprocesses,
multiple instances or control gateways, each linked by a normal sequence or an
exception sequence flow. A normal sequence flow can be either incoming to or
outgoing from a state and have associated guards; an exception sequence flow,
depicted by the state labelled task*, bpmn*, task** and bpmn**, represents an
occurrence of error within the state. A sequence of flows represents a specific
control flow instance of the business process. Figure 3(a) shows the abstract
syntax of a BPMN state, where each state records its type, its lists of incoming
and outgoing transitions, and its exception sequence flows as a list of pairs of
exceptions types and corresponding transitions. Figure 3(b) shows the abstract
syntax of a BPMN diagram, where each diagram is a collection of StateSets.
Each StateSet defines either a list of non-subprocess states (Atomic), or a sub-
process state (SubProcess), which records the type and sequence flows of the
subprocess states, and a list of StateSets representing the subprocess’s con-
stituent states.

3 Abstract Syntax of Observational Workflow

In this section we describe the observation workflow model OWorkflow. This
model generalises the clinical trial workflow model defined in the CancerGrid
project [4]. Each workflow is a list of parameterised generic activity interde-
pendence sequence rules, where each rule models the dependency between the
prerequisite and the dependent observations. Figure 4(a) shows the abstract
syntax of OWorkflow. Each sequence rule is implemented using the Haskell tu-
ple type EventSequencing, which contains a single constructor Event and each
observational workflow hence is a collection of sequence rules.

type OWorkflow = [EventSequencing]
data EventSequencing = Event ActId PreAct Condition Condition

(Maybe Obv) [RepeatExp] (Maybe Works)
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Fig. 4. Abstract syntax of (a) OWorkflow and (b) observation group

Each sequence rule is identified by a unique name of type ActId from the
first argument of the constructor Event, and contains zero or more dependent
observations. There are four reserved names of type ActId for identifying a start,
a generic termination, a successful termination and an unsuccessful termination
of a workflow execution. Each rule defines a structural composition of dependent
observations of type Maybe Obv, in the fifth argument of the sequence rule. (A
value of type Maybe a either contains a value of type a, or is empty.)

data Obv = ChoiceD [Obv] | ParD [Obv] | SeqD [Obv] | Da Act
type Act = (ActId,Duration,Duration,Condition,ActType)

We define a single dependent observation by the tuple type Act, whose first com-
ponent is a unique name from a set of names ActId distinct from those which
identify sequence rules. When performing dependent observations specified by
each sequence rule, there exists a delay: a range with a minimum and a maximum
duration, specified by the second and third component of Act of type Duration.
Each duration records a string value in accordance with XML schema datatypes.
For example in a clinical trial, the follow-up observation should be made between
two and three months after all observations associated with the end of the treat-
ment have been carried out. Each observation may either be a manual or an
automated observation, denoted by the fifth component ActType of Act.

Each composition of observations defines an observation group, as shown in
Figure 4. Figure 4(b) shows the abstract syntax of an observation group. Each
observation group structurally conforms to Kiepuszewski’s structure workflow
model [5, Section 4.1.3]. The following inductive definition of compositional rules
of an observation group follows from the definition of Obv:

1. If obv :: Act is a single observation, then Da obv :: Obv defines an ob-
servation group that yields to completion when the observation identified by
obv has been made. We write e :: T to denote the expression e has type T.
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2. Let obv1,...,obvN :: Obv be observation groups; their sequential com-
position SeqD [obv1,...,obvN] :: Obv also defines an observation group.
Given an observation group SeqD obvs, observations are made sequentially
starting at the head of obvs.

3. Similarly, let obv1,...,obvN :: Obv be n observations groups. An appli-
cation of the choice operation over them ChoiceD [obv1,...,obvN] ::
Obv defines an observation group, which structurally conforms the struc-
ture workflow model; it yields to completion when observations from one of
the observation groups from the given list have been made. Likewise, ParD
[obv1,...,obvN] yields to completion when observations from all of the
observation groups have been made.

4. Nothing else defines an observation group.

Dependent observations are performed after the observations associated with
the prerequisite sequence rules, identified by the data type PreAct, are com-
pleted. For example in a clinical trial the follow-up observation should be made
after all observations associated with the end of the treatment have been carried
out. A prerequisite is a collection of names that identifies preceding sequence
rules, recorded in the second argument of Event. It is defined using the data
type PreAct; we call each collection a prerequisite rule group.

data PreAct = All [PreAct] | OneOf [PreAct] | Pa ActId

The constructor Pa defines a single prerequisite rule by its argument, which
yields to completion when all observations associated with the rule identified
by the argument are made. The branching constructor All denotes synchroni-
sation over its given list of prerequisite rule groups; this yields to completion
when observations from all of the prerequisite rules groups from the given list
have been made. The branching constructor OneOf denotes an exclusive merge
over its given list of prerequisite rules groups; this yields to completion when
observations from one of the prerequisite rules groups from the given list have
been made.

Each sequence rule also defines a list, possibly empty, of repeat clauses de-
scribed by the sixth argument, typed [RepeatEx], of Event. Each clause specifies
the condition, the minimum and the maximum numbers of iterations and the
delay between iterations for the dependent observations of the sequence rule.
These clauses are evaluated sequentially over the list after one default iteration
of performing the rule’s dependent observations.

type RepeatExp = (Duration,Duration,Int,Int,Condition)

Each clause, of type RepeatExp, contains a condition specified by the fifth com-
ponent of type Condition. Our definition of Condition extends the skip logic
used in the CancerGrid Workflow Model [4]. Specifically, its syntax captures
expressions in conjunctive normal form.
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data Condition = None | Nondeter | And [Alter]
data Alter = Alt [SCondition]
type SCondition = (Range,Property)
data Range = Bound RangeBound RangeBound | Emu [String]
data RangeBound = Abdate Duration | Abdec Float | Abint Int |

Rldate Property Duration | Rldec Property Float |
Rlint Property Int

Each condition c :: Condition yields a boolean value and is either empty (true),
denoted by the nullary constructor None, nondeterministic denoted by the nullary
constructor Nondeter, or defined as the conjunction of clauses, each of which is a
disjunction of boolean conditions, of type SCondition. The type SCondition is
satisfied if the value of specified property (typed Property) falls into the specified
range (typed Range) at the time of evaluation. The specified property is a name
that identifies a particular property in the domain of the empirical study and this
corresponds the local property to the whole BPMN process [8, Section 8.6.1]. Note
while our formal semantics of BPMN [10] allows behavioural process-based specifi-
cations and corresponding verifications forOWorkflow, it is at a level of abstraction
in which we do not directly model the value of each properties.

The range may be an enumeration of values via the constructor Emu, or a closed
interval of two numeric values via the constructor Range over two arguments of
type RangeBound, which may be absolute or relative to a property.

Given a list of repeat clauses res defined in some sequence rule, evaluation be-
gins at the head of the list. Each clause res!!n, where n ranges over [1..(length
res - 1)], it may be evaluated after the evaluation of the clause res!!(n-1)
terminates. res terminates when last res terminates. (The operator !! denotes
list indexing in Haskell.)

For example, the follow up sequence rule of a clinical trial might specify that
follow up observations should be made every three months for three times after
the default observations have been made, after which observations should be
performed every six months for four times.

Each sequence rule might also include work units, recorded by the last argu-
ment of the constructor Event. Each work unit represents an empirical procedure
such as administering a medical treatment on a patient in a clinical trial. In each
sequence rule, the procedure defined by work units are interleaved with the rule’s
observations. Each collection of work units is defined by the data type Works
and is called work group.

data Works = ChoiceW [Works] | ParW [Works] | SeqW [Works] | Wk Work

The type Work records a unique name that identifies a particular empirical proce-
dure. Our definition of work group also structurally conforms to Kiepuszewski’s
structure workflow model, and both its abstract syntax and compositional rules
are similar to those of observation groups.

Finally the third and fourth arguments of a sequence rule are two conditional
statements, each of type Condition. While the third argument defines the con-
dition for enacting the sequence rule, the fourth argument defines the condition
for interrupting the enactment of the sequence rule.
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4 Transformation

In this section we describe the bidirectional transformation between observation
workflows of type OWorkflow and their corresponding subset of BPMN diagrams.
Specifically wehave implemented a total function transforming OWorkflow to BPMN
and its inverse, a partial function transforming a subset of BPMN to OWorkflow.

w2b :: OWorkflow -> BPMN
b2w :: BPMN -> OWorkflow

For reasons of space we only informally describe the transformation of a sin-
gle sequence rule to its corresponding BPMN subprocess state by explaining
the transformation over each of the components that make up the 7-tuple of a
sequence rule. We describe the transformation of individual components by in-
troducing some building blocks in BPMN, which may be mapped to those com-
ponents. A fuller description of the transformation may be found in our longer
paper [11]. We stress that these transformation are completely automated.

4.1 Observation

Figure 5 shows an expanded BPMN subprocess state depicting a single depen-
dent observation, of type Act. An observation may be performed after a delay
ranging from the minimum to the maximum duration, provided that its asso-
ciated condition is satisfied. The delay range is graphically modelled by first
modelling minimum duration as the stime state (timer start event), and then
modelling the duration ranges from the elapse of the minimum duration to the
maximum duration using a task state which halts for an unknown duration,
with an expiration exception flow, of which the expiry duration is the difference
between maximum and minimum durations of the delay. We use a xgate (exclu-
sive choice) decision gateway state for accepting either the task state’s outgoing
transition or its expiration exception flow.

The decision gateway is then followed by a task state, which models the actual
observation itself and is identified by applying the function idToTName to the
identifier of the observation being mapped.

idToTName :: ActId -> TaskName

An end state follows immediately for terminating the execution of the sub-
process. The subprocess itself has one incoming and one outgoing transition,

Fig. 5. A BPMN subprocess state depicting a single observation
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denoted as the outermost incoming and outgoing transitions respectively. We
have implemented the function mkAct to transform the subprocess state mod-
elling an observation of type Obv, encapsulating a tuple Act describing a single
observation via the constructor function Da. We have also implemented the func-
tion mkDpt to transform the tuple Act describing a single observation to a BPMN
subprocess modelling that observation.

mkAct :: StateSet -> Obv
mkDpt :: Act -> Line -> ([StateSet],Line)

4.2 Groups

Each sequence rule contains zero or more observations and work units. Whereas
the transformation of a single observation has been described in Section 4.1, each
work unit is modelled as a task state, of which the name that identifies the task
is obtained by applying the function workToTask on the unique identifier of the
work unit. Conversely, the function taskToWork is defined to map a task state
name to the unique name of the work unit it models. One or more observations
compose into an observation group, which has been defined inductively in Sec-
tion 3. Similarly one or more work units compose into a work group. Due to the
conformity of both types of compositions to the structured workflow model [5]
as mentioned in Section 3, we have generalised the notion of group and here we
describe the transformation between a group and its corresponding BPMN sub-
process state, which may be applied to both observation group and work group.

An example BPMN subprocess modelling a group is shown in Figure 6. It
shows a BPMN subprocess state describing an observation group defined by the
constructor ParD over a list of two observations, each defined by the constructor
Da. A similar BPMN subprocess state may be defined to describe a work group.
We describe informally the transformation rules for a group as follows:

1. Given group go defined by the constructor over a single activity sa, specif-
ically Da applied over a single observation for an observation group and Wk
applied over a single work unit for a work group respectively, we transform
sa according the type of the activity, for an observation, the transformation
rule has been described in Section 4.1, and a work unit is simply represented

Fig. 6. A BPMN subprocess state depicting an observation group
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by a task state, of which the task is identified by the name of the work unit.
We use sa’s outermost incoming and outgoing transitions as go’s outermost
incoming and outgoing transitions.

2. Given a group go defined by either a choice or a parallel constructor over a
list of n groups, specifically ChoiceD and ChoiceW or ParD and ParW applied
over a list of observation groups and work groups respectively, where n ≥ 1,
the corresponding BPMN states are either two xgate decision gateways for
choice construction or two agate decision gateways for parallel construction.
The first of these has one incoming transition, denoted as the go’s outermost
incoming transition, and n outgoing transitions, each matching the outer-
most incoming transition from one of the n groups, and the other one has n
incoming transitions, each matching the outermost outgoing transition from
one of the n groups, and one outgoing transitions, denoted as the go’s out-
ermost outgoing transition. The transformation of the n groups are defined
recursively.

3. Given an observation group go defined by the sequential constructor over a
list of n groups, specifically SeqD and SeqW over a list of observation groups
and work groups respectively, where n ≥ 1, the outermost outgoing transi-
tion of each group is matched by the outermost incoming transition of its
next group. The outermost incoming transition of the first group defines the
outermost incoming transition of go, and the outermost outgoing transition
of the last group defines the outermost outgoing transition of go.

We have implemented the function getObv to transform the subprocess state
describing an observation group to an observation group of type Obv.

getObv :: StateSet -> Obv
getInv :: StateSet -> Works

Similarly, we have implemented the function getInv to transform a work group of
type Works. Conversely, we have implemented the functions extObv and extWks
to transform an observation group of type Obv and a work group of type Works
to a subprocess state describing that group, respectively.

extObv :: Line -> Obv -> ([StateSet],Line)
extWks :: Line -> Works -> ([State],Line)

4.3 Repeat Clauses

Figure 7 shows a BPMN subprocess modelling a single repeat clause. According
to the semantics of a repeat clause, each repeat clause in a sequence rule repeats
all dependent observations defined in that rule; the number of repetitions from
each clause ranges between a minimum and a maximum value, and there is a
delay, ranging between a minimum and a maximum duration, before each repeti-
tion can start. We model the delay range of a repeat clause graphically according
to the transformation rules defined for a single observation in Section 4.1.
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Fig. 7. A BPMN subprocess state depicting a repeat clause

We model each repeated observations as a subprocess state according the
transformation of groups in Section 4.2. The subprocess, which defines the re-
peat clause, is a multiple instance miseqs state, and it has one incoming and
one outgoing transition, denoted as the outermost incoming and outgoing tran-
sitions respectively. The multiple instance subprocess state is implemented by
the Haskell type Miseqs which takes an integer value to specify the maximum
number of repetitions and a condition to specify the conjunction of the minimum
number of repetitions required and the clause’s conditional statement.

A list of repeat clauses is therefore transformed iteratively over each clause
starting from head of the list, similar to the transformation of a group for some
sequential constructor described in the Rule 3 in Section 4.2. Figure 8 shows
a BPMN subprocess state representing a list of two repeat clauses. Individual
repeat clause is shown as collapsed subprocess state.

Fig. 8. A BPMN subprocess state depicting a list of two repeat clauses

4.4 Sequence Rules

Figure 9 shows a BPMN subprocess state representing a single sequence rule.
The subprocess state is defined by three other subprocess states, collapsed in
the figure, which model observations, work units and repeat clauses defined in
the sequence rule. A sequence rule is enacted by first performing all its obser-
vations once, modelled by the subprocess observation block, after which the list
of repeat clauses, modelled by the subprocess state repeat clauses is evaluated.
As explained in Section 3, work units are empirical procedures and their exe-
cutions are interleaved with their corresponding observations, hence we use an
agate decision gateway state to initialise both observations and work units. We
do not constrain how work units are interleaved with observations as our current
workflow model focuses on the specification of observations, therefore it solely de-
pends on the study planners. Note if no work unit is defined in the sequence rule,
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Fig. 9. A BPMN subprocess representing a single sequence rule

the corresponding subprocess will not have agate states and will be represented
by a sequential composition of the observation block and repeat clauses states.

Finally we associate a conditional exception sequence flow with each sub-
process state to model the enacting and the interrupting conditions of the se-
quence rule. A detailed description can be found in our longer paper [11].

5 On Simulation, Automation and Formalisation

In this section we discuss briefly the application of business process management
technique to empirical studies. We describe informally, via a simple example, how
modelling empirical studies in BPMN allows their study plans to be simulated
and partially automated by translating the BPMN diagrams into executable
BPEL processes. We also discuss how modelling empirical studies in BPMN
has consequently induced a formal behavioural semantics upon our observation
workflow model and hence removed ambiguities in both the transformations and
interpretation of OWorkflow.

As useful as it is to visualise and formally specify a complete study plan,
it is also beneficial to validate the plan before its execution phase, especially
if the study has a long running duration, since it is undesirable to run into
an error three months into the study! One method of validating a study is by
simulation. When considering either simulating or automating a portion of a
study, we assume the observations specified in that portion can be appropriately
simulated or automated; an observation might define the action of recording a
measurement from a display interfacing with a software application or submitting
a web form to a web service for analysis. For example, the following specifies a
simplified observation group, modelling a choice over two different case report
form submissions in a clinical trial described briefly in Section 1.

ChoiceD [Da (Id "Tumour Measurement Report", Dur "P1D",Dur "P1D",
Ands [Ors [(Emu ["low"],"blood pressure")]],Manual),

Da (Id "Toxicity Review", Dur "P1D",Dur "P1D",
Ands [Ors [(Emu ["high"],"blood pressure")]],Manual)]

While submitting a report form is a manual task, due to the transformation,
it is possible to simulate this action by translating its corresponding BPMN
subprocess state into the corresponding sequence of BPEL activities:
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<switch>
<case condition="getVariableData(’blood pressure’) == high">
<wait for="PT1M"><operation name="sendToxicityReview">
<input message="toxicityMessage" /></operation></wait></case>

<case condition="getVariableData(’blood pressure’) == low">
<wait for="PT1M"><operation name="sendTumourReport">
<input message="tumourMessage" /></operation></wait></case>

</switch>

where each wait activity is an invocation upon the elapse of a specified duration.
Since the derived BPEL process is for simulation, we scale down the specified
duration of each observation. Note each invocation in a BPEL process is neces-
sarily of a web service; if the specified observation defines an action to invoke
a web service, e.g. uploading a web form, the translated BPEL operation will
also be invoking that web service, and otherwise, for simulation purposes, a
“dummy” web service could be used for merely receiving appropriate messages.
Similarly, partial automation is also possible by translating appropriate obser-
vations into BPEL processes which may be executed during the execution phase
of the study.

In recent work, BPMN has been given a formal relative timed semantics; in
particular one has been defined in the process algebra CSP [10]. By defining a
transformation function between OWorkflow and BPMN, it has automatically
induced a behavioural semantics for OWorkflow. For example, Figure 10 shows

Fig. 10. Two BPMN diagrams modelling semantically equivalent observation workflow

two different BPMN diagrams partially, each modelling the same observation
workflow described below, omitting description of observations and work units.

[Event (Id "SEQ1") (Pa START), Event (Id "SEQ2") (Pa (Id "SEQ1")),
Event (Id "SEQ3") (Pa (Id "SEQ1")),
Event NORMAL_STOP (All [Pa (Id "SEQ2"),Pa (Id "SEQ3")])]

Although applying the function w2b over this OWorkflow definition will yield
the diagram in Figure 10(a), one would like to know if applying the function b2w
over the two diagrams will yield the same OWorkflow definition. The formal
semantics of BPMN in CSP [10] allows us to show that these two diagrams are
in fact semantically equivalent, by model checking the following failures refine-
ment assertions: PLAN1 �F PLAN2 ∧ PLAN2 �F PLAN1 where PLAN1
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and PLAN2 are CSP processes describing the semantics of the partial BPMN
diagrams in Figure 10. This means both PLAN1 and PLAN2 have the same
behaviour and yields the same OWorkflow definition. Our semantic definition
also allows formal verification of observation workflow against behavioural spec-
ifications, an example of which may be found in our longer paper [11].

6 Conclusion

Specifications of long running empirical studies are complex; the production of
a complete specification can be time consuming and prone to error. We have
described a graphical method to assist this type of specification. We have intro-
duced an observation workflow model OWorkflow suitable for specifying empir-
ical studies, which then can be populated onto a calendar for scheduling, and
described bidirectional transformations, which allow empirical studies to be con-
structed graphically using BPMN, and to be simulated and partially automated
as BPEL processes. The transformation also induces a behavioural semantics
upon OWorkflow, and we have described the use of the semantics to remove
ambiguity in the transformation process.

To the best of our knowledge, this paper describes the first attempt to ap-
ply graphical workflow technology to empirical studies and calendar scheduling,
while large amounts of research have focused on the application of workflow
notations and implementations to “in silico” scientific experiments. Notable is
Ludäscher et al.’s Kepler System [6], in which such experiments are specified
as a workflow graphically and fully automated by interpreting the workflow
descriptions on a runtime engine. On the other hand we employ BPMN as a
graphical notation to specify and graphically visualise experiments and studies
that are typically long-running and in which automated tasks are often inter-
leaved with manual ones. Studies such as clinical trial would also include “in
vivo” intervention. Furthermore, our approach targets studies that are usually
recorded in a calendar schedule to assist administrators and managers. Sim-
ilarly, research effort has been directed towards effective planning of specific
types of long running empirical studies, namely clinical trials and guidelines.
Notable is Modgil and Hammond’s Design-a-Trial (DaT) [7]. DaT is a deci-
sion support tool for critiquing the data supplied specifically for randomized
controlled clinical trial specification based on expert knowledge, and subse-
quently outputting a protocol describing the trial. DaT includes a graphical
trial planner, which allows description of complex procedural contents of the
trial. To ease to complexity of protocol constructions, DaT uses macros, com-
mon plan (control flow) constructs, to assist trial designers to construct trial
specification.

Future work will include extending our observation workflow model for more
detail specifications of work units, such as temporal and procedural informa-
tion, thereby allowing study plans to be verified against specifications of the
relationship between work units and observations.
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